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I. INTRODUCTION 

Let 

= 

P(r1'r2IP1'P2) 

(1) 

denote the distribution of the sample product 
moment correlation coefficient, r, conditional 
on the first -lag sample autocorrelations, r1 and 

r2, and the first -lag population autocorrelations 

and p2, where the population cross -correlation 

is p = O. The conventional tests of significance 
for r rely on 

= II p(r,r1,r2Ip1,P2)drldr2' (2) 

Moreover Bartlett [1] and McGregor [5,6] have 
established that . 

P2) (3) 
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where n denotes the number of items in each of 
the series correlated.' 

In a recent paper, Nakamura, Nakamura and 
Orcutt (7] note that (1) is more informative than 
(2), and argue that tests of significance for r 
should be based on (1) rather than (2). Moreover 
Monte Carlo evidence is presented that 

V(rIri'r2) (7) 

Lacking Monte Carlo tabulations of (7) 

for small samples, a researcher can attempt to 
estimate (7) by substituting r1 and r2 for p1 and 

p2 in equation (6) as suggested by Orcutt and 

James [8], he can use (6) directly, or he can use 

V(rIP1P2 0) 2 (8) 

As n clearly V(rlrl,r2,p1,p2) V(rIrl,r2) 

V(rlpl,p2), 

In this paper, sampling methods are used to 
compare the percentage errors made in estimating 
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(7) for series of length 30 using these three 
approaches. 

II. METHODOLOGY 

Our generating relationships were of the 
form 

xt = PlXt-1 + 

and 

Yt = P2Yt-1 

where u and v were generated by two Chen random 
normal number generators.3 1,000 pairs of series 
of length 30 were generated and saved for each of 
the following pairs of values of pl and p2: 

(- .9,.9),(- .7,.7),(- .3,.3),( -.3,- .3),(.3,3)' 
(- .7,- .7),(.7,:7),(- .9, -.9), and (.9,.9).4 

For each series the autoregressive para- 
meter was estimated using least squares 
regression.5 Also we calculated the Pearson 
product - moment correlation coefficient for each 
pair of series. Each set of 1,000 sample correl- 
ation coefficients was then classified according 
to the values of the products of the sample auto - 
correlation coefficients, r1r2, of the pairs of 

series correlated. Intervals of 0.1 were used. 
Finally the observed variance of the sample 
correlations was calculated for each cell for 
each of our 9 sets of 1,000 correlations. 

For each cell in our product classifica- 
tion for each of our 9 sets of correlations we 
next approximated the variance of the sample 
correlations in that cell using the modified 
version of formula (6): 

1 + 2 

var r 2 

30(1 900(1 

where Y stands for the cell mean of the 
products of the sample autoregressive coeffi- 
cients. Secondly we estimated the cell variances 
using formula (6) with n 30. As a third alter- 
native, we estimated the cell variances using 
formula (8). We will call the estimates obtained 
for each cell using formulas (11); (6) and (8), 

estimates 1,2 and 3 respectively. 
We now calculated the percentage errors 

made in approximating the observed cell variances 
of our sample correlations using each of these 
three estimation methods. The formula used to 
obtain these percentage errors was 

(12) 

error i = (estimate 
i)- (observed cell variance) 
(observed cell variance) 

i =1, 2, 3. 

The percentage errors are shown in Table 1, where 
the top number in each cell corresponds to the 
percentage error made using estimate 1, the next 



number to the percentage error made using 
estimate 2, and the third number to the percent- 

age error made using estimate 3 for that cell. 

The cell frequencies - that is, the number of 

correlations in each cell - are shown in Table 2. 

III. FINDINGS 

Estimation method 1 results in smaller 
percentage errors in estimating our observed cell 

variances than either estimation methods 2 or 3 

for 69% of our cells, and smaller percentage 
errors than method 2 for 80% of our cells. Look- 

ing only at those cells where the frequency, or 

number of correlations, is at least 30, and hence 
where the observed sample variances of the correl- 
ations in each cell can be regarded as a reason- 
able estimate of the population conditional 
variance for that cell, we see that method 1 

results in smaller percentage errors than either 
methods 2 or 3 for 84% of these 49 cells. 

Thus method 1 is seen to be a more effi- 
cient method of estimating V(rIrl,r2) than either 

methods 2 or 3,8 and is more operational than 
method 2 which requires knowledge of the popula- 
tion autoregressive parameters. Further experi- 
ments using (- .9,0),(- .7,0),(- .3,0),(0,0),(.3,0), 
(.7,0),(.9,0) for the values of p1 and p2 

indicate that this result holds even when 

pip2 = 

FOOTNOTES 
1. This formalization of our problem was suggest- 

ed to us by Professor Arthur S. Goldberger. 
2. See Fisher [4], p. 191. 

3. See Chen [2,3]. The initial values used for 
the starting integers were 748511649 and 
147303541 for the u series and 180810529 and 
536841077 for the v series. Satisfactory 
statistical properties are reported for 
random numbers generated using these initial 
numbers in Chen [3]. For both series the 
mean was 0 and the standard deviation was 25. 
We set X0 = Y 

0 
O. The computer used was 

the IBM System /360 model 67 at the University 
of Alberta Computing Center. 

4. To minimize the effect of the initial values 
used in generating u and v the first pair of 
series of length 30 generated for each pair 
of values of p1 and p2 was discarded. Also 

every other one of the subsequent pairs of 
series of length 30 generated was discarded. 

5. Since in practice one would have no way of 
knowing the true value of the constant term, 
we estimated a constant term along with the 
autoregressive parameter. 
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6. Since 
E(rlrlr2) = E(r) = 

where r denotes the sample correlation 
coefficient [7], 

is an unbiased estimate of the variance of r. 

This is the formula which we used in comput- 
ing the cell variances. 

7. In our abstract these three estimation methods 
are referred to in reverse order. 

8. Stuart [9] presents a theoretical argument 
showing that given an estimator u of a para- 
meter in a multiparameter distribution, 
one does not necessarily improve its effi- 
ciency by substituting true parameter values 
into u to replace estimators of them. For 

a discussion of estimating efficiency and the 
power of tests see Sundrum [10]. 
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1. PERCENTAGE ERRORS 

Class intervals, 

for r1r2 
Values of p1 and p2 

(- 

-1.1 to -1.0 

-1.0 to -.9 

.9,.9)(- 

-114 
7 

875 

-36 
44 

1221 

.7,.7)(- .3,.3)( -.3,- .3)(.3,.3)( -.7,- .7)(.7,.7)( -.9,- .9)(.9,.9) 

15 444 
-.9 to -.8 35 1638 

1134 5309 

-6 83 
-.8 to -.7 -29 278 

552 1076 

6 19 
-.7 to -.6 -43 81 

419 462 

-3 7 

-.6 to -.5 -61 22 

259 281 

1 -4 22 

-.5 to -.4 -68 -14 140 
190 169 217 

-12 2 2 

-.4 to -.3 -78 -26 64 
100 131 117 

4 -2 2 

-.3 to -.2 -78 -42 37 

97 80 82 

-9 13 -6 25 -14 
-.2 to -.1 -85 -45 3 91 33 

39 71 36 78 24 

298 -18 -4 -3 -4 18 
-.1 to -45 -66 -12 21 20 252 

401 5 16 13 12 40 

292 -3 0 -14 -40 -10 -29 
to .1 35 -22 7 -5 45 119 405 

320 3 0 -12 42 -13 -30 

.1 to .2 664 2 12 -12 -13 9 -32 
390 -8 2 81 80 570 292 
548 -14 -5 -28 -28 -7 -46 

-17 13 31 -4 -15 -22 
.2 to .3 -39 -14 120 62 293 282 

-43 -20 -13 -36 -46 -47 
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1. PERCENTAGE ERRORS (cont.) 

Class intervals 

for r r 
Values of p1 and p2 

1 2 

.7,.7)(- .3,.3)( -.3,- .3)(.3,.3)( -.7,- .7)(.7,.7)( -.9,- 

-5 220 10 -9 -8 

.9)(.9,.9) 

32 
.3 to .4 -41 81 51 27 262 422 

-45 69 -40 -50 -50 -28 

10 7 -14 38 -9 
.4 to .5 -47 19 -6 327 184 

-50 -53 -63 -41 -61 

3 -10 5 -12 
.5 to .6 -11 -22 155 115 

-64 -69 -65 -70 

4 60 24 -15 
.6 to .7 -31 5 123 57 

-73 -58 -69 -78 

64 51 10 -9 
.7 to .8 -19 -25 40 20 

-68 -70 -80 -83 

361 16 -4 
.8 to .9 68 -2 -15 

-33 -86 -88 

43 55 
.9 to 1.0 -22 -16 

-89 -88 

1.0 to 1.1 
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2. CELL FREQUENCIES 

Class intervals 

for r r 
2 

Values of plp2 

-1.1 to -1.0 1 

-1.0 to 14 

-.9 to -.8 118 1 

-.8 to -.7 251 9 

-.7 to -.6 280 64 

-.6 to -.5 177 139 

-.5 to -.4 94 279 1 

-.4 to -.3 45 270 9 

-.3 to -.2 12 154 55 

-.2 to -.1 6 66 246 2 4 

-.1 to 2 16 544 99 186 4 

to .1 2 142 485 575 5 35 3 

.1 to .2 3 307 199 36 117 1 13 

.2 to .3 93 34 108 212 7 40 

.3 to .4 13 2 205 288 21 84 

.4 to .5 1 289 214 33 153 

.5 to .6 226 107 91 249 

.6 to .7 115 20 214 234 

.7 to .8 15 3 308 173 

.8 to .9 1 257 47 

.9 to 1.0 68 4 

1.0 to 1.1 
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